- combinatorial homotopy
- мат.комбинаторная гомотопия
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Combinatorial topology — In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions such as… … Wikipedia
CW complex — In topology, a CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still… … Wikipedia
Whitehead theorem — In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between topological spaces X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence provided X and Y are… … Wikipedia
Crossed module — In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H (which we will write on the left), and a homomorphism of groups that is equivariant with respect to the conjugation action of G on… … Wikipedia
J. H. C. Whitehead — Infobox Scientist name = J. H. C. Whitehead image width = 150px caption = John Henry Constantine Whitehead birth date = birth date|1904|11|11|df=y birth place = Madras (Chennai), India death date = death date and age|1960|5|8|1904|11|11|df=y… … Wikipedia
Simplicial set — In mathematics, a simplicial set is a construction in categorical homotopy theory which is a purely algebraic model of the notion of a well behaved topological space. Historically, this model arose from earlier work in combinatorial topology and… … Wikipedia
topology — topologic /top euh loj ik/, topological, adj. topologically, adv. topologist, n. /teuh pol euh jee/, n., pl. topologies for 3. Math. 1. the study of those properties of geometric forms that remain invariant under c … Universalium
Matroid — In combinatorics, a branch of mathematics, a matroid ( /ˈmeɪ … Wikipedia
Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… … Wikipedia
Areas of mathematics — Mathematics has become a vastly diverse subject over history, and there is a corresponding need to categorize the different areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities,… … Wikipedia
Cohomology operation — In mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a… … Wikipedia